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 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TORSION AWD BUCKLING OF OP3N SECTIONS*

By #. Wagner and W. Pretschaer
SUMMARY

Following an abstract of the well-known theory of
torsion in compression, the writers give directions for
the practical calculation of the values of Cgp (resist-
ance to flexure and torsion) and igp®, which determine
the torsion.

The second part treats the experiments in support of
the theory of torsion of plain and flanged angle sections.
The experiments are in gquite close agreement with the orig-
inal theory (omission of elastic deflection). The exist-
ing minor discrepancies are conclusively explained through
the subsequent modification of the theory (allowance for
elastic deflections). Under eccentric compressive stress-
es, long buckling struts are particularly subject to great
deformations in the median zone, which produce a change in
sectional stress distribution over the length of the mem-
ber. The scope of application of the theory is extended
to include long eccentrically compressed members by intro-
ducing a theoretically established mean value for the load
eccentricity along length f = 0.85 fygxe

After this extension the experiments with flanged an-
gle sections are remarkably close to the theory. On the
other hand, since the discrepancies between the original
and the modified theory average only about 10 percent for
the longest test specimens, and the application of the
original theory still affords a small safety margin, its
use commends itself for general purposes.

For the plain (nonflanged) angle sections the original
theory revealed a much closer agrecement than the modified
theory. But nonflanged sections form an exception among
all other sections: Their resistance to flexure and torsion

*"Verdrehung und Knickung von offenen Profilen." Iuftfahrt-
forschung, December 5, 1934, pp. 174-180.
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Cap, 1is abnormally low: compared +to the-torsipnal stiffness;
that is, the buckling load is almost 1ndopendent of the
length of the deformation. So when the direction of the
eccentricity .is- faverable for the median zone.of the mem-
ber, these sections are subgecﬁ to local deformatlons at

the ends., : -

I. INTRODUCTION

Open sections are members drawn or rolled from strip

wirtich, in contrast to the closed. (tubular) sections, en-
close no hollow space. The former have a very low tor-
sional stlffness .compared to the latter. Thus the tor-
sional stiffness of an open section drawn from strip who se
cross—sectional warplng is not prevented is exactly as

great as that of the flat strip from which it was made.
But, if the warping of the cross section is prevented,
say, .at one end of the member, longitudinal stresses are
developed which offer considerable resistance against
torsion when the member is relatively short.

‘When used as a comprcsszon member, .such a sectlon
fails frequently by twisting long oefore the Fulerian buck-
ling load or the yield point has been reached. This twist=
ing failure of the strut reverts, for centrically loaded
members, to a 31mnle stability problem and is similar to
the torsional instébility of beams subjected to bending.

IT. TORSION OF OPEN SECTICNS WITH CROSS SECTION

RESTRAINED AGAINST WARPING

This condition is illustrated in flgure 1. It is seen
that in the twisted attitude the points at the end surfaces
originally in a plane (as well as all other cross—sectional
surfaces) have shifted from the original plane according to
the displacement £,

The difference Af{ Tbetween the displacement of points
1 and 2 amounts to ‘

Mo =2AF S (1)

T

£ = r, An=9r
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where X = length of section, respectively, caoordinate
. -w;mwn,wiwinwlqngitpd;pgl direction. :

® = angle of torsion,

§ = %, respectively, %% = ¢' = angle of twist per
unit length.

2 ry Av = area enclosed by the radius vectors

from the axis of rotation to points 1 and 2
and by the "part of the periphery" Au.

AF

For an open section of any cross-—sectional form which
is twisted about its axis of rotation §, it is

E =27 &

where T = 2 % Ty A u, area between the radius vectors

through S and the periphery of the section. One radius
vector goes to the point, whose longitudinal displacement
(arbitrary for the present) = 0, the other to the point for
which the displacement (fig. 2) is desired. When defining
the displacement for point 4 (fig. 3), the difference

¥, - ¥y, must be substituted for F. '

The displacement is proportional to &; for & = 1,
it is called "unit displacement” and designated with the
letter w. Thus,

w=2F and £ =w &

Open sections stressed in torque are subject to lon-
gitudinal stresses when clamped at one end. The I-section
shown in figure 4 is under a torque load Q h = M. The
longitudinal stresses are also shown. Their distribution
over the section is precisely as that of the displacement
produced with unrestrained torsion

o = proportional to w

This is readily understood when observing. that for
uniform torsion, & = constant, the section exhibits, ac~
cording to equation (1), identically great warping in all
crogss sections, i.0., that the longitudinal fibers of the
scetion experience no length changes. Variable 4 1is fol-
lowed by displacements £ variable along the length. This
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induces linear elongations in the longitudinal fibers of
the section o ) ’

€ dx

or, according to (1) the stresses:

2

- _ o &f _ ds o
6 =E€¢ =EF ;>=Fw ;-=Ew i (2)

The work of form change affords the best means for
studying the relationship between the outside torque M
and the longitudinal stresses. The moment applied at the
tip of the beam producing angle of torsion ¢ performs
the work + M @, which must equal the work of the longi-

)
tudinal stresses or:
v v 287
1 - 2. 2 - 1 2 = a~e —
s Mo J o2 av = =) B w ios) &% dFl

It is seen that thd resistance against the torsion
moment is proportional to a quantity:
7

Tais value ropresents the so-called "torsion-bending con-
stant .

Integration along x affords the relation*

o _
7 a1 = BT 6 that is, o= Hlog ‘ (4)
w Car
. a3
Mg= — B Cqpm =— (5)
“ BT dxs

With allowance for the temporarily disregarded Saint-
Venant's torsional stiffness G Jp, it is

o | a0’
M= -1 3+ G Jp = 6
L TSI S
*These equations are in strict accord with the relations
of the theory of flexure: 43

Pl = %-o; whereby J =/ m® aF and P = EJ E;%
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III. TWISTING FAILURE OF STRUTS

When stressing a comparatlvely thin~-walled open sec~-

;ﬁlon, such as an angle section in compression, each indi-
“vidual flange tends to buckle at right angles to its plane

(fig. 5). But .the side,of-the flange lying at the corner
of the angle section supports itself against the other
flange which, in view of ‘such.stresses, has a wery high
section modulus and consequently prevents the buckling of
the first flange at this p01nt and vice versa.

Thus, we have two noss1h1e forms of buckllng'

1) both flanges buckle in the same direction - the

section is rotated as a Whole by twisting (fig.
5a); :

2) both..flanges buckle in opposite directions (fig.
5b) . : ,

With the latter type-of buckling the angle section is de~

formed, as a result of which the work of form change 1is

greater in this case. On the other hand, of the two po s~

sible forms of buckling, the one invarilably occurs first

to which the least work of form change corresponds for

cqual work of the outside ]oadS, i.ce, twisting of the
section. : ’ :

Wow we discuss the genecral case. An originally
straight, open section is under a sensibly eccéntrically
acting compressive stress P, whoge line of action is
parallel to the strut axis. op = ¥ is to denote the mean

compressive stress, and Op the assumedly predetermined
resultant compressive,and bending stress variable across
the section. The Op stresses run-in direction of the
longitudinal fibers of the section; that is, they slope
ocbliguely -to the original axis as the section i1g distort-
ed. Lae angle of inclination of a fiber due to torsion
is v @'. Thus op r @' is the horizontal componeant of

" Op3 1ts dlrectlon is perpendicular to r. These stresses

set up a moment about the center of shear amounting to

Npg = cp’.j r2? Op.dF =

... ' F _ _ L
=¢' opf g~ r2arF = ¢ P igp® . (7)
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. P o S L
where % S ai-rz aF = iSPz ‘ (7a?

“fbr_centrically adting fofde- P,'}We héfe CP = Op; that
is, Mppy = @' Op J., with J, = polar moment of inertia
PO ® Po s s

of profile section about the axis of shear.
‘Dividing dP = op + O into the quota of pure com—

pression and bending stress due to eccentricity e of the
compressive strain, we have:

On + O
.2 L D "B 2 = 1 2 L 2
isp” T 7 57 r2 4r Ffr.dF—!-eJ.:fnr ar
with m = distance of surface particle dF. from the neu-~

tral axis, and J = moment of inertia of the section;
'ig® and iy are section constants. C '

The moment ~Mpp is, according to (6) in equilibrium
- with the moment of the shearing stresses, so that the dif-
ferential equation for torsion becomes:

e'"" E Cgp + @' (P igp® - G Jp) =0 7 (9)

The solution for the most important case, i.e., cross—
sectional - warping not restrained at the ends, is:

@ - 9o gin %? (9o = angle of té;sion in center)
‘with the.limiting condition:
© = 0 and @” =0 for x =0 and x = 1.

‘Insertion in the differential eguation gives the buck-
ling load:

: 2 ' ' '
Py = =g (0 9p + Tz E GBT> (10)

If the load acting on the member is lower than the
buckling load given by this equation, the member is not
.distorted at all, provided there is no initial distortion
in the center, )
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But if the load reaches the amount indicated, the
member gives way suddenly under the effect of the torsion
(simple stability problem). Only thowe sections having a
low value CBT/ISP * with respect to the moment of inertia

of the profile section (compare equation (10)) have a tend-
ency to fail Dby tw1st1ng. .

There is no connectlon between crippling (according
to Euler) and twisting for buckling struts under centri-~
cal load; .the sectlon is either to be calculated for Eule-
rian crlppllng load or twisting, depending on.whether the
1ower Puckling load corresponds to: one or the other of the
two phenomena. ‘

In long, eccentrically compressed members the deflec—
tion due to eccentricity may become so great that the
stress distribution in the median zone is sensibly unlike
that at the ends (iSP2 is then variable along x, ac—

cording to equation (9))., We shall refer to this again in
a subsequent section., Formula (10) is satisfactory for
most practical cases.

Yot another case is that of a member originally
slightly twisted, so as to produce in the center an ini-
tial elongation through an angle @,. Assuming a sinu-

soidal torsion, the angle @ gradually increases accord-
ing to the law of

as the load increases. 4 gradual increase in twist occurs
equally in an originally quite straight member when, for
example, in a symmetrical profile section the compressive
force P acts outside of the plane of symmetry. Such
cases are discussed in detail in the publication printed
incidental to the twenty~fifth anniversary of the Danzig
Technical Institute..
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IV DETERMINATIOT OF ”q“ SHEAR CELTER A’D
THE TORSIOV BEWDth CONSTA“T

‘a) Shear Center .

-To prove the absence of special difficulties involved
in determining the shear venter and the. tors1on—bend1ng
constant Cpp, We define both hereinafter with the aid of

a symmetrical cross section.. The- rounded—off Dlaces are
replaced by identical straight parts.

For bending about the plane of symmetry of the cross
section (as zero stress curve) the location of the result-—
ant shear force is determined from.the distribution of the
shearing. stresses. The change A T s of the shear force
Ts on a part A u of the cross section is proportional
to the distance y .of the surface elements. s Au from
the zero stress curve (fig. 6).. The proportionality fac-—
tor is arbitrarily put equal to 1, thus: '

A Ts=y 85 Au

When a straight plece of the profile section is of
constant wall thickness, the shearing force per unit
length along this piece is parabolical. With known T s
at start 1 of the straight piece, the shearing force T sy
at point 2 and transverge force Q.5 acting on piece 1:2
are: :

-+
T sy = T sy F by Lo Ye (11)

‘ E .
Quz = T sy lyig + 1,,.° (% Y. *t & yz) (12)

Starting at one of the two section tips, the line of
action of the resultant transverse force is readily ob-
tained. The intersection of this line with the axis of
symmetry is the center of shear.

b) Determination of Cpnp
: F

The torsion-bending constant Cpp = / w® 4F is found

graphically or, preferably, analytically. The "unit dis-
placement" w varies linearly for every straight piece of
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the profile periphery and is readily computable. . In the

~ plane of -symmetry, we have w = 0-, Flgure 7. shows W For

the flanged section with the corner areas. renlaced by -
stralght 11nes.

Wlth the notatlons of flgure 7 it is:

CBT =1 w® aF = ZLs.f (wy + a iiz dx”;

s
Ts LW kowpa i+ 2(al) ] o0 (18)

or, arfter con%ersion conformal, to a l = wy - wy (fig. 7):
Cpp = % Ts 1 (wi® + wo + wp®) (14)

It can be proved* that w consists of two parts:
W = Wy + Wp, heretofore expressed with w = wy and, ac-

cordingly, CBTu L Cpp, Dbecause wp 1is of secondary.sigu

nificance with the conventional thin-walled structures em—
ployed in airplane design. Thus, aside from the calculat-
ed Cpgp = Cpr, there is yet Cgp,- which may be expressed
with a simple integral. With the notations of figure 8,
it is:
S:3 . 2 S:3 2
Car, = I3 J ory® dp = 85/ 1y drg (15)

V. DXPERIMENTAL RESULTS

a) Test Samples

To check the theoretical loads for twisting failure,
we. made a number of buckling tests on open compression
members. The results show a very close agreement with the
calculation. In order to obtain a clear picture of the
effect of each quantity appearing in

: kK
Py = —g <G Jp + 2—’2— E CBT'> (10)
isp”

*25th anniversary number of -the Danzig Technical Insti-
tute, p. 331l. '

**See equation (10), warping not restrained.
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two profile séctions 6% drawn dural strip of equal cross-
" gectional area (F = 0,56 cm?) and shank.length (2.9 cm)
were chosen (fig. 9). ~ B . _

The buckling loads were determined through experiments
with three different léngths (1 = 18.6; 1 = 38.6; and
1 = 58.6 cm) with respect to the eccentricity of the load
applied at the plane of symmetry. '

The profile constants computed from exact measurements
are given in the following:

TABLE I
Fota—-|Dimen~ Sectibn shape
tion| sion < 4 o<
Eros;:gectibnal'arga'—_ B F cm? O.565'f0.566
Wall thickness . s cm'.. .085 | ,10
‘Length of developed section b cm 6.64 5,66
Distance of center of zravity Xg cm :1.228 1.10
Distance of shear.center Xgen| CB .137 .0326
iloment of inertia about amis x J# cm® .955 .885
lloment of inertia about axis ¥ Iy cm4 © W275 .198
Polar moment of inertia about | v
shear center Jp cm#% 2.273 11,700
Torsion-bending constant Cyo cn® .060 .0016
Constant S ig®| em® | 4,02 [3.00
Constant ' ' o “in cm 4.44 14,20
Hodulus of elasticity E  |kg/em®{740000 }740000
forsional stiffness ¢ Jp |kg/em®| 400 | 405

cra- X 0.3937 = ine; cm? X 0.1550 = sgsine; kg/cm2 X
14:‘2255 = 1bn/Sq.in.
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*b)*Test Arrangement

The 1oad1ng machlne employed in the tests 1s 111us-+~
trated in figure 10. x . .

The bar (a) is compressed: betwéen .two sets of crossed
knife- edges (g). The load is applled at the end of a:
lever by means of weights™ (d). ' The buckllng load wa.s de~
termlned Wlth an accuracy of iO.E kg. :

The eccentric1ty of the compre531ve load was deter—
mined through measuring the deflection. during the loading
and the initial eccentricity was derived therefrom. This
removed the unavoildable ‘errors incident to direct deter-
mination of initial eccentricity and the effect of any

1n1t1al deformatlon'

The deflectlon, measured with a solid rod (f) on two

knife edges and micrometer screw (m), was accurate to

within’ iO 02 mm.

The modulus of elasticity and the torsional stiffness

were determined from careful tension and torsion tests.

¢) Centrically Compressed Members '

1_ T2
Fw = IsP2 \¢ Ip + 1? E-GBT>
1gp” :;%.f r® aF = constant =‘isz . -(10a)

For this case figﬁres 11 aﬁd 12 show, aside from the

torsion loads (stresses), the Euler curves for both sec—

tions with respect to length and slenderness ratio. The
respective proportion of G Jp. and Cgp to the quantity

of the tor51on load is also 1nc1uded..

_ .Both 'sections have exceeded the Stablllty limit Wlth
regard to torsion stress long before the Eunlerian load is
reached. The short bar of flanged section is appreciabdbly
superior to the angle section because of 1ts h15h CBT’
but as the 1ength 1ncreases the effect of GBT. becomes
small compared to G Jp. For long bars,'the tors;onal
stiffness practlcallv boverns the torsion load,.and for

this reason the angle section is superior to the flanged
section,

kg X 2.20462 = lb.; mm X 0.,03937 = in.
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The measured torsion loads are shown as points. Up
to the result for angle -section of 1 = 18,6 cm the test
data (of very close accuracy for buckling tests) are in
accord with the calculation.

The discrepancy in this case (1 = 18.6 cm) may be
attributed to the restraint of the end cross sections
against warping through w,. (See footnote (*), p. 9.)

Allowing for this fact the results are as shown by the
dot—dash curves of figure 12. (With complete restraint of
the "end cross sections against warping the value of Cgp
ig four times as high.)

d) Eccentrically Compressed Members

P = i (GJ + T2 3¢ ) (10D)
", e NI T E E Can

The results are illustrated in figures 13 to 18. Ec-
centricity from the center of gravity toward the back of
the section is figured negative. The ratio of effective .
torsion load Py to the torsion load Py, of the cen-

trically compressed bar chosen as criterion affords a more
comprehensive comparison,

These curves reveal the intimate relationship between
torsion load and locad eccentricity, If the load acts in
the vicinity of the shear center the torsion load finally
becomes infinitely great. With Py -—> infinite, i.e.,

iSP2~e> 0 (comparec also equation (8)), the corresponding

eccentricity is, according to (10):

142 :
e = - S (18)

P ~>roe n

The dashed theoretical curves are computed for assumedly
constant stress distribution. (See fig. 19; Op = Qp + Op
is constant in every section over the whole length of the
member.)

But under eccentric stress the strut deflects ﬂcolumn
effect); thus the eccentricity, and consequently, the stres
distribution over the length of the bar becomes variable
(fig. 20). Taking into consideration the thus-obtained



Bt i g

254

T.A.C.A., Technical Mcmorandum No, 784 13

IR

exact stress distribution (consideradle paper work involved)

_the full lines represent the tors1on 1oads.

It 1s seen that all magor dlscrepancies (from 10b)-are
practically confined to: long bars and to the range of neg®
ative eccentrlclty, so that as a general rule this simple
calculatlon 1s close enough for estlmations. !

When,:ln lcng sectlons, the force acts 1n the v1c1n~'
ity of the corner, the deflectlon in the. center causes
the llne of action in the medlan part of the section to
shlft ‘more toward the corner. The result-i§ a stress: d1s~
tr1but1on in the center such as to void the guestion of”
twisting ‘at thi's point. (See equation (16)% ) Thus it" hap—
pens in the test that the section first-has a tendency to
twist, but returns to its median position as the load in-
creases; that is, the deflection in the center ‘increases
and then breaks in a different manner.,  (See fig. 18, at
e = - 4,0 mm.) In plain (nonflanged) sections, the in-
creased value of the torsion load does not conform to the
beneficial eccentricity in the bar center, but rather to
the form as illustrated in figure 21b, where the torsion
load corresponds to the eccentricity &t the ends. Thus
the test samples of the angle sections of ‘length 7 = 5846
cm, excepting e = -« 4.0 mn, twisted according to figure
21D; all others according to figure 2ia. The latter form
does not appear when the section is flanged as, owing to
the shorter buckling length in this case, resulting from
the high Cpp, the buckling load would be considerably

higher. (Compare the effect of ! in equation (10).)

Numerically the experiments are in guite clese accord
with the theoretical results,

*Note: Let f,x Dbe the maximum deflection of the bar.
Then the zdditional stress distributed sinusoidally over
the bar length may be replaced by a comstant distribution
h aving the same work of deformation if the additional
eccentricity equals 0.85 f and the calculation 1s re-—
duced to case a)

If 0.85 fp max = n, then (according to Hutte, vol,
I (25th edition), p. 645: '

max’

G Jm + E G
0.85 T 12 BT

n = ————*—————+ 0,15 and Py = P
cos g s 17 + i, e
& PE

It is best to resolve this equation graphically_ by comput-
ing P,/P for any P and defining Py from I¥ = 1,

P
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As concerns the d1screpanc1es, Wé‘ndfe° The dlécrep~
ancies occurring in the test with the short angle section

(fig. 16) .are — as for centrically loaded sections - a re=

sult of cross—sectional buckling unavoidable in the .test.

Owing to_inacburécies.in preparation, the profile
surfaces assumed as flat in the calculation of CBT were

actunally slightly curved., The .result was that the gctual
CBT were slightly hlgher than ‘those used in the calcula~

tion, which explains the sllghtly hlgher torsion 1oad shown
for all short sectlons (figs. 11 and 12)., This is partic-
ularly noticeable 6én the angle sectlons ‘because of their

'1nherent1y low = Cgq. values.

The mathematical'deflectionstin the strut center are
plotted for torsion load versus eccentricity and are in
close agreement Wlth the measured values.

Translation by J. Vanier,
National Advisory Conmittee
for Aeronautics.
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Figures 2,3,~ Formation of the
displacements.

Figure 4,~ Formetion of longitudinal
stresses with restraint
‘of the end cross~section against

warping.
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‘ _ Figure 6.~ Shearing stresses due to
Figure 5.- Types of transverse force through
buckling ' shear center.
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Shear
‘center

Figure 7.,- Veriation of the
unit displacement. P

A

Figure 9,- Dimensions of exemined
sections,

Figures 19,20,~ Modified end actual

stress distritution
in eccentric compression,

a &

Figure 21.,~ Forms of torsion
of open sections,

Figure 1C.; Loading machxne.
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Figs. 11,12,13,14
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Figures 11,12.- Torsion loade in centrical compression.
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Pigures 13,14.- Ratio of torsionm loads in eccentric fo centric compression.
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Figures 15,16,17,18,«= Ratio of torsion loads in eccentric
to centric compression,
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